
ISOLATION AND STRUCTURE OF A MYCOSPORINE FROM THE RED ALGA CHONDRUS YENDOI

Isami Tsujino $^{\star_{1}}$, Kazuo Yabe $^{2)}$, Isao Sekikawa $^{3)}$ and Nobuyuki Hamanaka $^{3)}$

- 1) Department of Chemistry, Faculty of Fisheries, Hokkaido University, Hakodate 041
- 2) Chemical Laboratory, Kushiro College, Hokkaido University of Education, Kushiro 085
- 3) Institute of Immunological Science, Hokkaido University, Sapporo 060, Japan (Received in Japan 26 January 1978; received in UK for publication 7 March 1978)

Recently, much attention has been focused on the existence of spectrally characteristic UV-absorbing substance in algae. There are, however, few reports concerning their chemical and physiological properties. Now we have isolated an optically active and water-soluble compound with a sharp absorption maximum at 320 nm from the red alga <u>Chondrus yendoi</u> which was collected at the shore of Zenikamezawa, Hakodate, Japan. More recently, three mycosporines having a absorption maximum at 310 nm have been isolated, from <u>Stereum hirsutum</u>, <u>Botrytis cinera</u>, and <u>Palythoa tuberculosa</u>, and named mycosporine 1, mycosporine 2¹⁾, and mycosporine-Gly 1², respectively. The present communication describes the isolation and structure of a new mycosporine iminomycosporine-Gly designated as palythine 2^{**} .

Repeated chromatography of aq. EtOH extract of <u>C. yendoi</u> on carbon column (eluent:50% aq.MeOH) provided a compound as white crystals, $C_{10}H_{16}N_2O_5$, mp 155-156°C (dec.); (α)_D -7.9 (c=1.5, H₂O); UV (H₂O) λ_{max} 320 nm (log ε =4.55). The pmr spectrum (D₂O) of <u>2</u> showed an AB quartet at δ 2.69 and 2.95 (each 1H, J=15.5 Hz), four singlets at 2.78 (-CH₂-), 3.58 (-CH₂O-), 4.02 (>N-CH₂-), and 3.65 (-OCH₃). The cmr spectrum shown in Table 1. Esterification with CH₃OH-HC1 gave the methyl ester hydrochloride, $C_{11}H_{18}N_2O_5$.HC1, mp 186-187°C (dec.), ir 1740 cm⁻¹.

Treatment of 2 with Ac_2O -pyridine at room temperature for 6 hr afforded the triacetate 3, $C_{16}H_{20}N_2O_7$, mp 172-174°C (dec.); MS m/e 352 (M⁺); ir 3310, 1740, 1725, 1660, 1590 and 1555-1535

cm⁻¹; pmr δ (CDC1₃-DMSO-d₆) 1.92, 2.09 and 2.21 (each 3H, s, -COCH₃), 3.78 (s, 3H, -OCH₃), 3.73 and 4.79 (each 1H, AB_q, J=17 Hz), 5.01 (s, 2H, -CH₂O-), 7.17 and 8.15 (each 1H, d, J=3 Hz, aromatic) and 8.98 (bs, 1H, exchanges with D₂O).

Brief hydrolysis of 2 with 1% NaOH at 40°C for 1 hr gave glycine and aminocyclohexenone 4 ^{***}, $C_8H_{13}NO_4$, mp 216-217°C (dec.); MS m/e 187 (M⁺); UV (H₂O-H⁺) λ_{max} 293 nm (H₂O-OH⁻) λ_{max} 297 nm. The pmr spectrum of 4 (D₂O) showed two AB quartets at 6 2.42 and 2.68 (each 1H, J=15.5 Hz), 2.62 and 2.92 (each 1H, J=19.2 Hz), two singlets at 3.52 (2H) and 3.59 (3H). The cmr spectrum (Table 1).

Acetylation of <u>4</u> with Ac_2O -pyridine at room temperature for 10 hr afforded two acetates <u>5</u>³⁾, mp 176-177°C (dec.); ir 1730 cm⁻¹; pmr δ (DMSO-d₆) 2.08 (s, 3H, -COCH₃), 3.58 (s, 3H, -OCH₃), 3.95 (s, 2H, -CH₂O-), 4.95 (bs, tert.OH) and 6.18 (bs, 2H, -NH₂); δ (Pyridine-d₅) 2.94 (s, 2H, -CH₂-), 2.98 and 3.10 (each 1H, AB_q, J=18 Hz), and <u>6</u>³⁾, mp 127-128°C; ir 1720 and 1670 cm⁻¹; pmr δ (DMSO-d₆) 6.60 and 7.38 (each 1H, d, J=3 Hz, aromatic).

Treatment of <u>4</u> with 4% NaOH at 80°C for 2 hr followed by careful neutralization yielded the aminophenol <u>7</u>, $C_8H_{11}NO_3$, mp 113-114°C; UV (H_2O-H^+) λ_{max} 276 nm (H_2O-OH^-) λ_{max} 291 nm; pmr δ (DMSO-d₆) 6.04 and 6.13 (each 1H, d, J=2 Hz, aromatic).

Table 1.¹³C Chemical Shifts, ppm (TMS=0), D₂O

Carbon Number	1	2	3	4	5	6	7	8	9	10
1^{2}	187.2	130.4	159.7	33.8	72.9	45.4	68.4	60.2	43.7	174.5
<u>2</u> ^a)	162.0	125.8	160.4	34.6	72.4	37.2	68.5	60.2	48.1	174.7
$\underline{4}^{a}$	187.5	130.4	158.8	37.2	73.5	45.0	68.5	60.0		
<u>8</u> ²)		134.7	181.0	41.4	73.1	41.4	68.5	60.9		
Multiplicities	b)s	s	S	t	s	t	t	q	t	S

a) Internal standard; TMS=0, D_20 .

b) Multiplicities in the off-resonance decoupled spectra of 1, 2, 4, and 8.

Furthermore, the chemical shifts (cmr) of 2 are very similar to those of 1 except C_1 , C_2 and C_6 carbon atoms. Differences between the chemical shifts of 2 and 1 can be explained by difference of the substituent at C_1 .

Studies on the biogenesis and the role of this new compound in the marine plant are now in progress.

Acknowledgement: We are grateful to Professor Y. Hirata, Nagoya University, for helpful discussions

REFERENCES AND NOTE

1) N. Arpin, J. Favre-Bonvin and S. Thivend, Tetrahedron Letters, (1977) 819.

2) S. Ito and Y. Hirata, Tetrahedron Letters, (1977) 2429.

3) These compounds gave satisfactory elemental analyses.

- ** Professor Hirata and Dr. Uemura also isolated the same compound from <u>Palythoa</u> <u>tuberculosa</u> (private communication). The authors and they proposed name " palythine " for this compound.
- *** Hirata et al. have reported that mycosporine-Gly gave glycine and unstable β-diketone <u>8</u> when heated in water.